Topological entropy and Hausdorff dimension of irregular sets for non-hyperbolic dynamical systems
نویسندگان
چکیده
We systematically investigate examples of non-hyperbolic dynamical systems having irregular sets full topological entropy and Hausdorff dimension. The include some partially hyperbolic geometric Lorenz flows. also pose interesting questions for future research.
منابع مشابه
Entropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملTopological Entropy Bounds for Hyperbolic Dynamical Systems
We describe an automated method for computing rigorous lower bounds for topological entropy which was originally introduced in [DFTn07]. We combine this method with the work of Zin Arai in [Araar] to find rigorous lower bounds on topological entropy for 43 hyperbolic plateaus of the Hénon map.
متن کاملSets of “non-typical” Points Have Full Topological Entropy and Full Hausdorff Dimension
For subshifts of finite type, conformal repellers, and conformal horseshoes, we prove that the set of points where the pointwise dimensions, local entropies, Lyapunov exponents, and Birkhoff averages do not exist simultaneously, carries full topological entropy and full Hausdorff dimension. This follows from a much stronger statement formulated for a class of symbolic dynamical systems which in...
متن کاملentropy operator for continuous dynamical systems of finite topological entropy
in this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. it is shown that it generates the kolmogorov entropy as a special case. if $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملDerivative Formulas for Generalized Srb Measure, Entropy, and Hausdorff Dimension of Hyperbolic Systems of Codimension One
Under the condition that unstable manifolds are one dimensional, the derivative formula of the potential function of the generalized SRB measure with respect to the underlying dynamical system is extended from the hyperbolic attractor case to the general case when the hyperbolic set intersecting with unstable manifolds is a Cantor set. It leads to derivative formulas of objects and quantities t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Dynamical Systems-an International Journal
سال: 2022
ISSN: ['1468-9375', '1468-9367']
DOI: https://doi.org/10.1080/14689367.2022.2031890